

J3314-15 January 2015 Supercedes J3314 Released March 2010

Driveshafts for Industrial Applications

Table of Contents

- 1 Dana: Driveshaft engineering experts
- 4 Survey of GWB[®] driveshaft series with design features and preferred applications
- 8 Special designs of GWB[®] driveshafts and additional equipment
- 10 Notations for reviewing data sheets

Data sheets

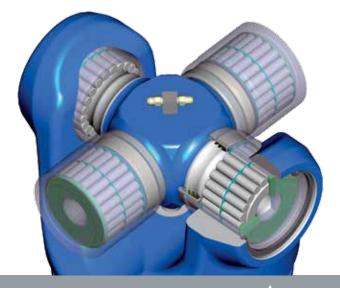
- 12 Series 687/688
- 16 Series 587
- 18 Series 390
- 20 Series 392/393
- 22 Series 492
- 24 Series 498
- 26 Series 587/190 Super short designs
- 28 Series 330 Quick release couplings
- 29 Series 230 Quick release couplings
- 30 Journal cross assemblies
- 31 Flange connection with serration
- 32 Face key connection series 687/688/587/390
- 33 Standard companion flanges
- 34 Design features Series 687/688/587 and series 390/392/393
- 36 General theoretical instructions
- 38 Technical instructions for application
- 48 Selection of GWB® driveshafts
- 51 Additional information and ordering instructions
- 52 After-sales service

Dana: Driveshaft engineering experts For more than 100 years, Dana's expertise and worldwide network of manufacturing partnerships have sustained its ability to supply economically efficient, high-performance products to original equipment manufacturers (OEMs) in changing market environments.

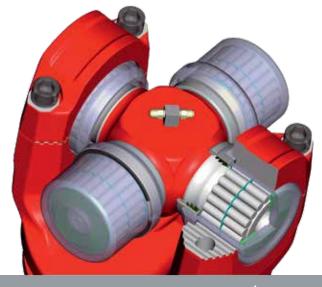
With a focus on technical innovation, quality performance, reliability, and flexibility, Dana engineers continue to provide customers with the same quality and support they've come to expect.

Since 1946, Dana's GWB[®] driveshafts have been known for global innovation and quality performance. GWB[®] heavy driveshafts were the first to be developed specifically for diesel locomotives. In the 1950s, GWB® driveshafts were the largest available at that time, and were followed several decades later by the first maintenance-free driveshaft. Based on a long-standing commitment to continual innovation and customer satisfaction, GWB® driveshafts have been recognized as a market leader throughout the world.

GWB[®] driveshafts include a wide range of products for multiple applications, covering a torque range from 2,400 to 16,300,000 Nm.



Today, there are basically two types of driveshafts that have evolved into a worldwide technology standard. Their main difference lies in the design of the bearing eye.

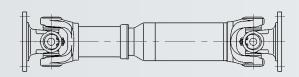

Closed bearing eye: This is a design used mainly in the commercial vehicles sector and for general mechanical engineering applications (series 687/688 and 587).

Split bearing eye: Developed for heavy and super-heavy duty applications, this design (series 390/392/393 and 492/498), provides compact dimensions in conjunction with a maximum torque transmission capability and greatly improved service life, apart from facilitating maintenance and assembly operations.

2,400 - 16,300,000 Nm

Closed bearing eye

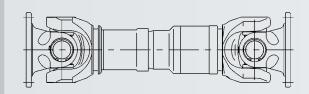
⊐2



Series

687/688

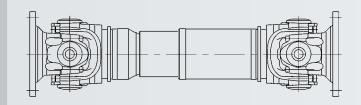
Torque range TCS from 2.4 to 35 kNm


Flange diameter from 100 to 225 mm

587

Torque range TCS from 43 to 57 kNm

Flange diameter from 225 to 285 mm



390

Maximum bearing life

Torque range TCS from 60 to 255 kNm

Flange diameter from 285 to 435 mm

Design features

- Closed bearing eyes
- Compact design
- Low maintenance
- Plastic-coated splines
- Operating angle up to 25°, partly up to 44°

Preferred applications

- Railway vehicles
- Rolling mill plants
- Marine drives
- General machinery construction plants

Technical data (refer to data sheets)

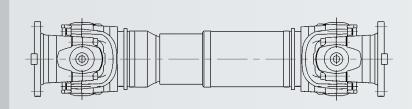
- Closed bearing eyes
- Compact design
- Low maintenance
- Splines coated with lubricating varnish (587.50 – plastic-coated)
- Operating angle up to 24°

- Railway vehicles
- Rolling mill plants
- Marine drives
- General machinery construction plants
 - Technical data (refer to data sheets)

- Maximum bearing life in confined spaces
- Split bearing eyes with toothed bearing cap
- Compact design
- Optimized roller bearing
- Length compensation coated with lubricating varnish
- Operating angle up to 15°

- Railway vehicles
- Marine drives
- Crane systems
- Paper machines
- General machinery construction plants

Technical data (refer to data sheets)

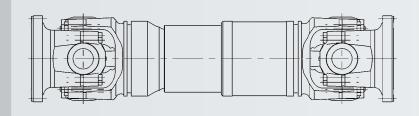

Series

392/393

High torque capacity/ optimized bearing life

Torque range TCS from 70 to 1,150 kNm

Flange diameter from 225 to 550 mm

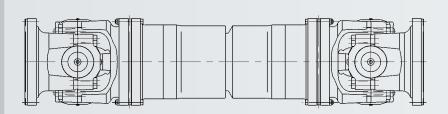


492

Maximum torque capacity

Torque range TCS from 210 to 1,300 kNm

Flange diameter from 285 to 550 mm



498

Larger sizes available on request

Torque range TCS from 1,880 to 15,000 kNm

Flange diameter from 600 to 1,200 mm

Design features

Preferred applications

Rolling mill plants

Calender drives

construction

- High torque capacity despite small connecting dimensions
- Split bearing eyes with toothed bearing cap
- Compact design
- Journal cross with low notch factor
- Length compensation coated with lubricating varnish
- Operating angle 10° up to 15°
- Series 393 with optimized bearing life
- Rolling mill plants Calender drives
- Extremely high loaded plants of general machinery construction

Heavy-loaded plants of general machinery

Technical data (refer to data sheets)

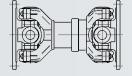
- Increased torque capacity in comparison to 393
- Split bearing eyes with toothed bearing cap
- Standard Hirth-serrated flange
- Journal cross with low notch factor
- Length compensation coated with lubricant varnish
- Operating angle 7° up to 15°

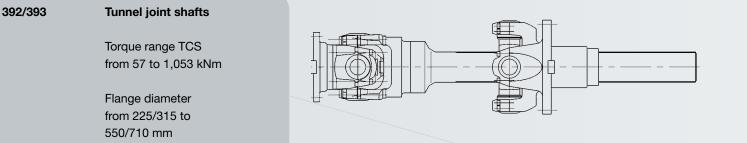
Technical data (refer to data sheets)

- Three operating angle versions for maximum torque or maximum bearing life capacity
- Split bearing eyes with toothed bearing cap
- Standard Hirth-serrated flange
- Operating angle up to 15°

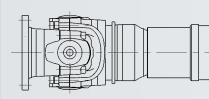
- Main rolling mill drive units
 - Heavy machinery construction plants
 - Technical data (refer to data sheets)

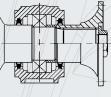
Special designs of GWB[®] driveshafts and additional equipment


Series


587/190

Super short designs


Torque range TCS from 23 to 94 kNm


Flange diameter from 275 to 405 mm

Intermediate shafts

Special designs of GWB[®] driveshafts and additional equipment

Design features

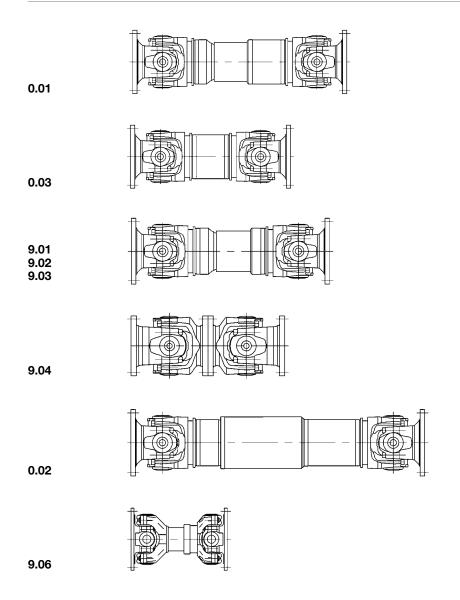
Preferred applications

- Closed bearing eyes (series 587)
- Split bearing eyes (series 190)
- Joints and length compensation are regreasable
- Operating angle up to 5°

- Railway vehicles
- Rolling mill plants
- Marine drives
- Calender drives
- Paper machines
- General machinery construction plants

Technical data (refer to data sheets)

- Shorter designs with large length compensation
- Length compensation through the joint
- High torque capacity with small connection dimensions
- Split bearing eyes with toothed bearing cap
- Bearings with labyrinth seals
- Operating angle up to 10°/7.5°
- With or without length compensation
- Integrated bearing location


© Spicer Gelenkwellenbau GmbH

Rolling mill plants

Pump drives

Notations for reviewing data sheets

Standard designs

Driveshaft with length compensation, tubular design

Driveshaft without length compensation, tubular design

Driveshaft with length compensation, short design

Driveshaft without length compensation, double flange shaft design

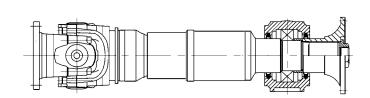
Special designs

Driveshaft with large length compensation, tubular design

Driveshaft with length compensation, super short design

© Spicer Gelenkwellenbau GmbH

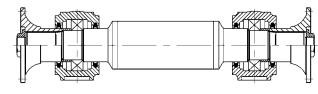
Intermediate shafts*


(available with intermediate bearing on request)

Intermediate shaft with length compensation

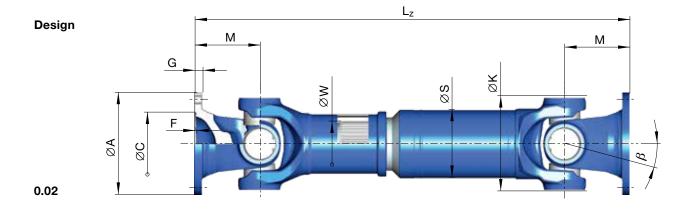
Intermediate shaft without length compensation

Midship shaft


* Data sheet and/or drawing available on request.

0.04

0.04


0.01

- 0.02 with length compensation, tubular design
- 0.03 without length compensation, tubular design
- 9.01 with length compensation, short design

- 9.03 with length compensation, short design
- 9.04 without length compensation, double flange shaft design

Shaft size		687/688.15	687/688.20	687/688.25	687/6	88.30	687/6	88.35		687/6	88.40		
T _{CS}	kNm	2.4	3.5	5	6	.5	1	0	14				
T _{DW}	kNm	0.7	1.0	1.6	1.	.9	2.9			4	.4		
L _c	-	1.79 x 10 ⁻⁴	5.39 x 10 ⁻⁴	1.79 x 10 ^{−3}	2.59 x 10 ⁻³		0.0	128		0.0	422		
β	¢°	25	25	25	25		25		25	44	25	44	
А	mm	100	120	120	120	150	150	180	150	150	180	180	
к	mm	90	98	113	127	127	144	144	160	160	160	160	
B ± 0.1 mm	mm	84	101.5	101.5	101.5	130	130	155.5	130	130	155.5	155.5	
C H7	mm	57	75	75	75	90	90	110	90	90	110	110	
F ¹)	mm	2.5	2.5	2.5	2.5	3	3	3	3	3	3	3	
G	mm	7	8	8	8	10	10	12	10	10	12	12	
H + 0.2 mm	mm	8.25	10.25	10.25	10.25	12.25	12.1	14.1	12.1	12.1	14.1	14.1	
l ²)	-	6	8	8	8	8	8	8	8	8	8	8	
М	mm	48	54	70	72	78	95	90	102	102	102	102	
S	mm	63.5 x 2.4	76.2 x 2.4	89 x 2.4	90 x 3	90 x 3	100 x 3	100 x 3	120 x 3	100 x 4.5	120 x 3	100 x 4.5	
W DIN 5480	mm	36 x 1.5	40 x 1.5	45 x 1.5	48 x 1.5	48 x 1.5	54 x 1.5	54 x 1.5	62 x 1.75				

T_{CS} = Functional limit torque*

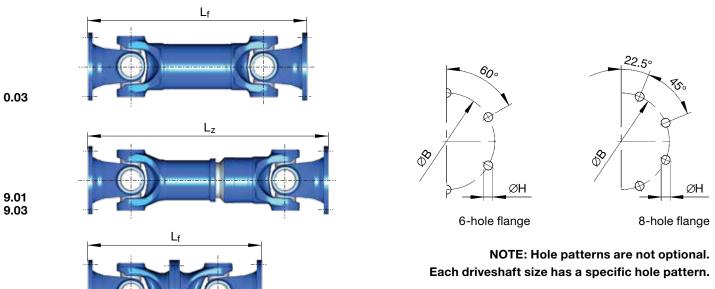
must be reinforced.

If the permissible functional limit torque $T_{\mbox{CS}}$

is to be fully utilized, the flange connection

T_{DW} = Reversing fatigue torque*

L_c = Bearing capacity factor*


* See specifications of driveshafts.

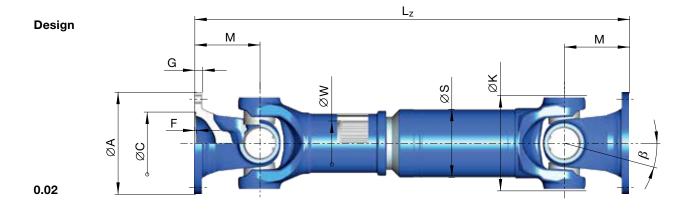
β = Maximum deflection angle per joint

Tubular shafts with welded-on balancing plates have lower fatigue torques T_{DW} 1) Effective spigot depth 2) Number of flange holes

Design

9.04

Design	Shaft si	ize	687/688.15	687/688.20	687/688.25	687/6	88.30	687/6	88.35		687/6	88.40	
0.02	L _{z min}	mm	346	379	458	492	504	582	572	586	693	586	693
	La	mm	60	70	100	110	110	110	110	110	180	110	180
	G	kg	5.7	8.4	12.0	13	14.2	24.0	25.6	28.7	30.3	29.4	30.9
	G _R	kg	3.62	4.37	5.13	6.44	6.44	7.18	7.18	8.66	10.6	8.66	10.6
	Jm	kgm ²	0.0043	0.0089	0.0144	0.0245	0.0245	0.043	-	0.0676	0.0706	0.0776	0.0806
	Jm _R	kgm ²	0.0034	0.0059	0.0096	0.0122	0.0122	0.0169	0.0169	0.0296	0.0242	0.0296	0.0242
	С	Nm/rad.	0.26 x 10 ⁵	0.42 x 10 ⁵	0.71 x 10 ⁵	0.78 x 10 ⁵	0.78 x 10 ⁵	1.18 x 10 ⁵	-	2.17 x 10 ⁵	1.61 x 10 ⁵	2.17 x 10 ⁵	1.61 x 10 ⁵
	CR	Nm/rad.	0.34 x 10 ⁵	0.60 x 10 ⁵	0.98 x 10 ⁵	1.25 x 10 ⁵	1.25 x 10 ⁵	1.72 x 10 ⁵	1.72 x 10 ⁵	3.02 x 10 ⁵	2.47 x 10 ⁵	3.02 x 10 ⁵	2.47 x 10 ⁵
0.03	L _{f min}	mm	221	239	282	310	322	379	369	423	449	423	449
	G	kg	4.1	5.8	8.6	8.6	9.8	18.0	19.6	22.8	21.0	23.4	21.6
	Jm	kgm ²	0.0038	0.0085	0.0129	0.0238	0.0238	0.04	-	0.066	0.0628	0.076	0.0728
	С	Nm/rad.	0.44 x 10 ⁵	0.86 x 10 ⁵	1.44 x 10 ⁵	1.74 x 10 ⁵	1.74 x 10 ⁵	1.81 x 10 ⁵	-	3.35 x 10 ⁵	2.78 x 10 ⁵	3.35 x 10 ⁵	2.78 x 10 ⁵
9.01	L _{z min}	mm	296	322	361	379	391	510	500	505	525	505	525
	L _{a min}	mm	38	41	36	36	36	70	70	70	60	70	60
	L _{z max}	mm	348	381	425	453	465	550	540	545	645	545	645
	L _{a max}	mm	90	100	100	110	110	110	110	110	180	110	180
9.03	L _{z min}	mm	245	274	313	331	343	419	409	441	-	441	-
	L _{a min}	mm	25	27	28	29	29	45	45	45	-	45	-
	L _{z max}	mm	280	317	355	397	409	484	474	506	-	506	-
	L _{a max}	mm	60	70	70	95	95	110	110	110	-	110	-
9.04	L _{f min}	mm	192	216	280	288	312	380	360	408	408	408	408


- La = Length compensation
- L_{f min} = Shortest fixed length

 L_z + L_a = Maximum operating length

- G = Weight of shaft
- G_R = Weight per 1,000 mm tube
- Jm = Moment of inertia
- Jm_R = Moment of inertia per 1,000 mm tube
- C = Torsional stiffness of shaft without tube
- C_R = Torsional stiffness per 1,000 mm tube

- 0.02 with length compensation, tubular design
- 0.03 without length compensation, tubular design
- 9.01 with length compensation, short design

- 9.03 with length compensation, short design
- 9.04 without length compensation, double flange shaft design

Shaft size			687/688.45			687/688.55		687/6	88.65	
T _{CS}	kNm		17			25		35		
T _{DW}	kNm		5.1			7.3		11		
L _c	-		0.104			0.236		0.837		
β	¢°	25	35	25	25	35	25	25	25	
А	mm	180	180	225	180	180	225	180	225	
К	mm	174	174	174	178	178	178	204	204	
B ± 0.1 mm	mm	155.5	155.5	196	155.5	155.5	196	155.5	196	
C H7	mm	110	110	140	110	110	140	110	140	
F ¹)	mm	3	3	5	3	3	5	3	5	
G	mm	12	12	15	14	14	15	15	15	
H + 0.2 mm	mm	14.1	14.1	16.1	16.1	16.1	16.1	16.1	16.1	
l ²)	-	8	8	8	10	10	8	10	8	
М	mm	95	95	90	115	115	95	110	110	
S	mm	120 x 4	110 x 5	120 x 4	120 x 6	120 x 6	120 x 6	142 x 6	142 x 6	
W DIN 5480	mm		68 x 1.75			78 x 2		88 x 2.5		

T_{CS} = Functional limit torque*

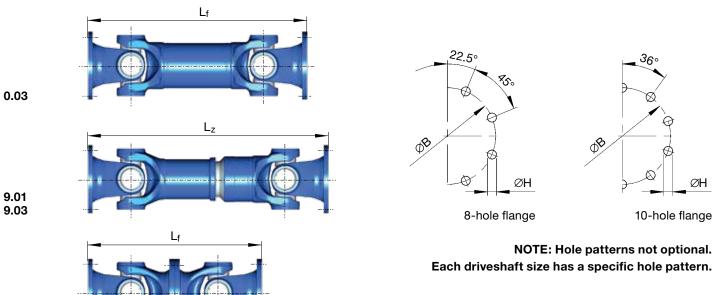
must be reinforced.

If the permissible functional limit torque $T_{\mbox{CS}}$

is to be fully utilized, the flange connection

T_{DW} = Reversing fatigue torque*

L_c = Bearing capacity factor*


* See specifications of driveshafts.

 β = Maximum deflection angle per joint

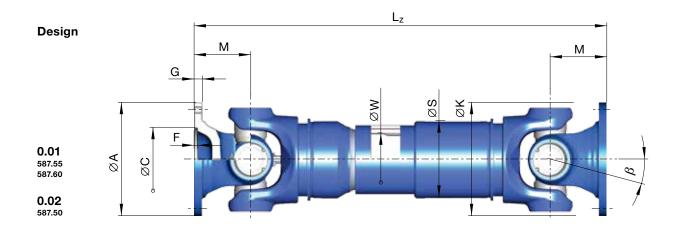
Tubular shafts with welded-on balancing plates have lower fatigue torques $T_{\rm DW}$ 1) Effective spigot depth 2) Number of flange holes

Design

9.04

			007/000 45								
Design	Shaft si	ize		687/688.45			687/688.55		687/6	88.65	
0.02	L _{z min}	mm	595	703	585	662	681	622	686	686	
	La	mm	110	180	110	110	110	110	110	110	
	G	kg	35.7	38.4	37.7	44.0	49.2	47.0	60.6	64.6	
	G _R	kg	11.44	12.95	11.44	16.86	16.86	16.86	20.12	20.12	
	Jm	kgm ²	0.1002	0.1242	0.1342	0.131	-	0.151	0.2224	0.2614	
	Jm _R	kgm ²	0.0385	0.0357	0.0385	0.055	-	0.055	0.0932	0.0932	
	С	Nm/rad.	3,10 x 10 ⁵	2,18 x 10 ⁵	3,10 x 10 ⁵	4,05 x 10 ⁵	-	4,05 x 10 ⁵	5,63 x 10 ⁵	5,63 x 10 ⁵	
	CR	Nm/rad.	3.93 x 10 ⁵	3.65 x 10 ⁵	3.93 x 10 ⁵	5.60 x 10 ⁵	5.60 x 10 ⁵	5.60 x 10 ⁵	9.50 x 10 ⁵	9.50 x 10 ⁵	
0.03	L _{f min}	mm	425	425	415	475	495	435	491	491	
	G	kg	28.0	27.8	30	33.1	-	36.1	47.3	51.3	
	Jm	kgm ²	0.0954	0.0976	0.1294	0.1176	-	0.1376	0.2032	0.2422	
	С	Nm/rad.	4.82 x 10 ⁵	3.71 x 10 ⁵	4.82 x 10 ⁵	5.39 x 10 ⁵	-	5.39 x 10 ⁵	7.17 x 10 ⁵	7.17 x 10 ⁵	
9.01	L _{z min}	mm	517	538	507	587	606	547	601	601	
	L _{a min}	mm	70	60	70	70	70	70	70	70	
	L _{z max}	mm	557	658	547	617	636	577	641	641	
	L _{a max}	mm	110	180	110	100	100	100	110	110	
9.03	L _{z min}	mm	447	-	437	513	-	473	524	524	
	L _{a min}	mm	50	-	50	50	-	50	50	50	
	L _{z max}	mm	507	-	497	563	-	523	584	584	
	L _{a max}	mm	110	-	110	110	-	110	110	110	
9.04	L _{f min}	mm	380	380	360	460	460	380	440	440	

 $L_{z \ min}$ = Shortest possible compressed length


- La = Length compensation
- L_{f min} = Shortest fixed length

 $L_z + L_a = Maximum operating length$

- G = Weight of shaft
- G_R = Weight per 1,000 mm tube
- Jm = Moment of inertia
- Jm_R = Moment of inertia per 1,000 mm tube
- C = Torsional stiffness of shaft without tube
- C_R = Torsional stiffness per 1,000 mm tube

Data sheet series 587

- 0.01 with length compensation, tubular design
- 0.02 with large length compensation, tubular design
- 0.03 without length compensation, tubular design
- 9.01 with length compensation, short design
- 9.02 with length compensation, short design
- 9.03 with length compensation, short design
- 9.04 without length compensation, double flange shaft design

Shaft size		58	7.50	587	7.55	587	.60		
T _{CS}	kNm	4	3	5	57	5	7		
T _{DW}	kNm	1	3	2	23	23			
L _c	-	1.	84	7	.6	24	.8		
β	¢°	24	24	20	20	20	20		
А	mm	225 250		250 285		285	285		
К	mm	215	215	250	250	265	265		
B ± 0.1 mm	mm	196	218	218	245	245	245		
Bs ± 0.1 mm	mm	-	214	214	-	240	-		
C <i>H</i> 7	mm	140	140	140	175	175	175		
F ¹)	mm	4.4	5.4	5.5 6.0		6.0	6.0		
G	mm	15	18	18	20	20	20		
H + 0.2 mm	mm	16.1	18.1	18.1	20.1	20.1	20.1		
Hs <i>H12</i>	mm	-	25	25	-	28	-		
l ²)	-	8	8	8	8	8	8		
ls ³)	-	-	4	4	-	4	-		
М	mm	108	108	125	125	135	135		
S	mm	144 x 7	144 x 7	167.7 x 9.8	167.7 x 9.8	167.7 x 9.8	167.7 x 9.8		
W DIN 5480	mm	90 x 2.5	90 x 2.5	115 x 2.5	115 x 2.5	115 x 2.5 115 x 2.5			

T_{CS} = Functional limit torque*

If the permissible functional limit torque $\ensuremath{\mathsf{T}_{\mathsf{CS}}}$

is to be fully utilized, the flange connection

(e.g., with dowel pins) must be reinforced.

Yield torque 30% over T_{CS}

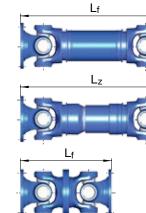
T_{DW} = Reversing fatigue torque*

- L_c = Bearing capacity factor*
- * See specifications of driveshafts.

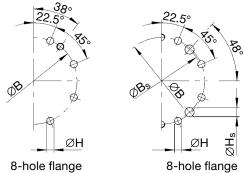
 β = Maximum deflection angle per joint

 Effective spigot depth
 Number of flange holes (standard flange connection)
 Number of flange holes (dowel pin connection)

Data sheet series 587



0.03


9.01

9.02 9.03

9.04

Standard flange connection

8-hole flange

Dowel pin connection according to DIN 15451

			5										
Design	Shaft s	ize				587	7.50				58	7.55	587.60
0.01	L _{z min}	mm		-	-				-		840	840	870
	La	mm		-	-				-		100	100	100
	G	kg		-	-				-		120	126	132
	G _R	kg		-	-				-		38.2	38.2	38.2
	Jm	kgm ²		-	-				-		0.657	0.737	0.950
	Jm _R	kgm ²		-	-				-		0.239	0.239	0.239
	С	Nm/rad.		-	-				-		8.7 x 10 ⁵	8.7 x 10 ⁵	9.6 x 10 ⁵
	CR	Nm/rad.		-	-				-		24.3 x 10 ⁵	24.3 x 10 ⁵	24.3 x 10 ⁵
0.02*	L _{z min}	mm		80	00			8	00		960	960	990
	L _{a min}	mm		1	10			1	10		200	200	200
	G	kg		8	6			ç	91		157	162	170
	GR	kg		23	3.7			23	3.7		38.2	38.2	38.2
	Jm	kgm ²		0.3	325			0.3	361		-	-	-
	Jm _R	kgm ²		0.1	111		0.111				0.239	0.239	0.239
	С	Nm/rad.		5.29	9 x 10 ⁵		5.29 x 10 ⁵				-	-	-
	CR	Nm/rad.				11.3	3 x 10 ⁵		24.3 x 10 ⁵	24.3 x 10 ⁵	24.3 x 10 ⁵		
0.03	Lf	mm	540				5	40		610	610	640	
	G	kg		7	2		77				90	95	103
	G _R	kg		23	3.7			23	3.7		38.2	38.2	38.2
	Jm	kgm ²		0.2	270			0.0	306		0.547	0.627	0.84
	Jm _R	kgm ²		0.1	111			0.1	111		0.239	0.239	0.239
	С	Nm/rad.		7.2	x 10 ⁵			7.2	x 10 ⁵		9.8 x 10 ⁵	9.8 x 10 ⁵	11.5 x 10 ⁵
	CR	Nm/rad.		11.33	x 10 ⁵			11.33	x 10 ⁵		24.3 x 10 ⁵	24.3 x 10 ⁵	24.3 x 10 ⁵
9.01	L _{z min}	mm		-	-				-		815	815	843
	La	mm		-	-				_		100	100	100
	G	kg		-	-				-		110	115	142
	Jm	kgm ₂		-	-				_		0.64	0.72	0.93
	С	Nm/rad.		-	-				-		8.8 x 10 ⁵	8.8 x 10 ⁵	9.7 x 10 ⁵
9.02	Lz	mm		-	-				_		780	780	810
	La	mm		-	-				_		65	65	70
	G	kg		-	-	_			-		108	113	125
9.03	Lz	mm	550	600	650	696	550	600	650	696	720	720	750
	La	mm	60	75	90	110	60	75	90	110	65	65	65
	G	kg	61	66	68	70	66	71	73	75	113	118	126
	<u>~</u>		61 66 68 70 432			432							
9.04	Lf	mm		4:	32			4	32		500	500	540

 $L_{z \ min}$ = Shortest possible compressed length

La = Length compensation

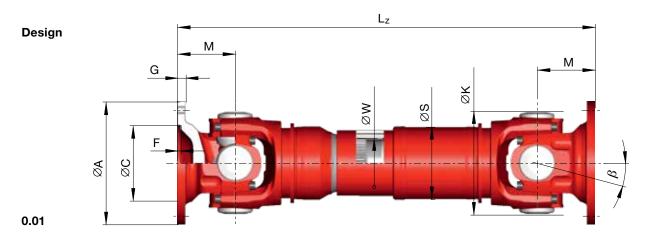
L_{f min} = Shortest fixed length

 $L_z + L_a = Maximum operating length$

G = Weight of shaft

= Weight per 1,000 mm tube G_R

= Moment of inertia Jm


 Jm_R = Moment of inertia per 1,000 mm tube С = Torsional stiffness of shaft without tube C_{R}

+

= Torsional stiffness per 1,000 mm tube Larger length compensation available on request

Data sheet series 390 Maximum bearing life

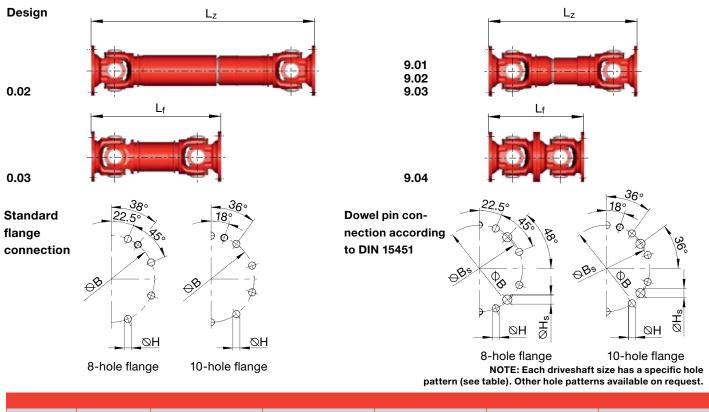
- 0.01 with length compensation, tubular design
- 0.02 with large length compensation, tubular design
- 0.03 without length compensation, tubular design
- 9.01 with length compensation, short design
- 9.02 with length compensation, short design
- 9.03 with length compensation, short design
- 9.04 without length compensation, double flange shaft design

Shaft size		390.60	390.65	390.70	390.75	390.80
T _{CS}	kNm	60	90	130	190	255
T _{DW}	kNm	23	36	53	75	102
L _C	-	24.8	70.2	238	618	1563
β	 ¢°	15	15	15	15	15
А	mm	285	315	350	390	435
к	mm	240	265	300	330	370
B ± 0.1 mm	mm	245	280	310	345	385
Bs ± 0.1 mm	mm	240	270	300	340	378
C <i>H</i> 7	mm	175	175	220	250	280
F ¹)	mm	6	6	7	7	9
G	mm	20	22	25	28	32
H ⁴)	mm	20.1	22.1	22.1	24.1	27.1
Hs <i>H</i> 12	mm	28	30	32	32	35
l ²)	-	8	8	10	10	10
ls ³)	-	4	4	4	4	4
М	mm	135	150	170	190	210
S	mm	167.7 x 9.8	218.2 x 8.7	219 x 13.3	273 x 11.6	273 x 19
W DIN 5480	mm	115 x 2.5	150 x 3	150 x 3	185 x 5	185 x 5

T_{CS} = Functional limit torque*

If the permissible functional limit torque $\ensuremath{\mathsf{T}_{\mathsf{CS}}}$

is to be fully utilized, the flange connection


(e.g., with dowel pins) must be reinforced.

Yield torque 30% over T_{CS}

T_{DW} = Reversing fatigue torque*

- L_c = Bearing capacity factor* * See specifications of driveshafts.
- β = Maximum deflection angle per joint
- Effective spigot depth
 Number of flange holes (standard flange connection)
 Number of flange holes (dowel pin connection)
 390.60 - 390.70 + 0.2 mm 390.75 - 390.80 + 0.5 mm

Data sheet series 390 Maximum bearing life

Design	Shaft siz	e	390.60	390.65	390.70	390.75	390.80
0.01	L _{z min}	mm	870	980	1,070	1,210	1,280
	La	mm	100	135	135	170	170
	G	kg	138	216	276	405	490
	G _R	kg	38.2	45.0	67.5	74.8	119
	Jm	kgm ²	1.04	1.61	2.51	4.20	8.20
	Jm _R	kgm ²	0.239	0.494	0.716	1.28	1.93
	С	Nm/rad.	1.0 x 10 ⁶	1.65 x 10 ⁶	2.43 x 10 ⁶	3.3 x 10 ⁶	4.7 x 10 ⁶
	CR	Nm/rad.	2.43 x 10 ⁶	5.04 x 10 ⁶	7.3 x 10 ⁶	1.3 x 10 ⁷	1.96 x 10 ⁷
0.02*	L _{z min}	mm	990	1,080	1,170	1,295	1,365
	L _{a min}	mm	200	220	220	250	250
	G	kg	178	280	337	508	586
	G _R	kg	38.2	45.0	67.5	74.8	119
0.03	L _{f min}	mm	640	710	800	890	960
	G	kg	109	159	218	302	385
	G _R	kg	38.2	45.0	67.5	74.8	119
9.01	Lz	mm	843	953	1,043	1,175	1,245
	La	mm	100	135	135	170	170
	G	kg	136	213	273	402	482
9.02	Lz	mm	810	890	980	1,100	1,170
	La	mm	70	75	75	95	95
	G	kg	135	198	261	375	456
9.03	Lz	mm	750	835	925	1,030	1,100
	La	mm	65	75	75	85	85
	G	kg	135	202	264	371	453
9.04	Lf	mm	540	600	680	760	840
	G	kg	108	146	210	284	380

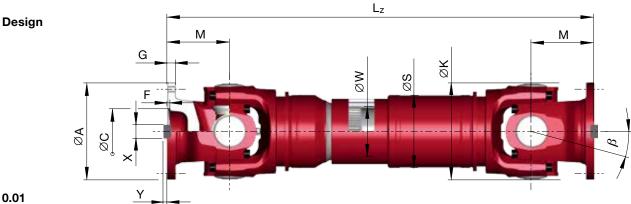
= Length compensation La

L_{f min} = Shortest fixed length

 $L_z + L_a = Maximum operating length$

= Weight per 1,000 mm tube G_R

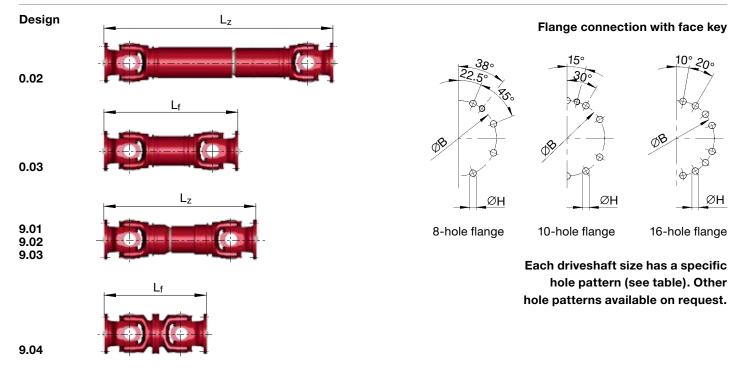
= Moment of inertia Jm


= Moment of inertia per 1,000 mm tube Jm_R

= Torsional stiffness of shaft without tube C_{R} = Torsional stiffness per 1,000 mm tube

Larger length compensation available on request

Data sheet series 392/393 High torque capacity


- 0.01 with length compensation, tubular design
- 0.02 with large length compensation, tubular design
- 0.03 without length compensation, tubular design
- 9.01 with length compensation, short design
- 9.02 with length compensation, short design
- 9.03 with length compensation, short design
- 9.04 without length compensation, double flange shaft design

Shaft size		392.50	392.55	392.60	392.65	392.70	393.75	393.80	393.85	393.90
T _{CS}	kNm	70	105	150	215	295	390	580	750	1,150
T _{DW}	kNm	23	36	53	75	102	140	220	285	435
L _c	-	7.6	25.2	82.6	261	684	1,700	7,070	15,600	62,600
β	¢°	15	15	15	15	15	10	10	10	10
А	mm	225	250	285	315	350	390	435	480	550
К	mm	225	250	285	315	350	390	435	480	550
В	mm	196	218	245	280	310	345	385	425	492
C H7	mm	105	105	125	130	155	170	190	205	250
F ¹)	mm	4.5	5	6	7	7	8	10	12	12
G	mm	20	25	27	32	35	40	42	47	50
н	mm	17	19	21	23	23	25	28	31	31
l ²)	-	8	8	8	10	10	10	16	16	16
м	mm	145	165	180	205	225	205	235	265	290
S	mm	167.7 x 9.8	218.2 x 8.7	219 x 13.3	273 x 11.6	273 x 19	273 x 36	323.9 x 36	355.6 x 40	406.4 x 45
Х е9	mm	32	40	40	40	50	70	80	90	100
Y	mm	9	12.5	15	15	16	18	20	22.5	22.5
W DIN 5480	mm	115 x 2.5	150 x 3	150 x 3	185 x 5	185 x 5	185 x 5	210 x 5	210 x 5	240 x 5

- T_{DW} = Reversing fatigue torque*
- = Bearing capacity factor* Lc
- See specifications of driveshafts.
- β = Maximum deflection angle per joint
- 1) Effective spigot depth 2) Number of flange holes

Data sheet series 392/393 High torque capacity

Design	Shaft s	ize	392.50	392.55	392.60	392.65	392.70	393.75	393.80	393.85	393.90
0.01	L _{z min}	mm	890	1,010	1,090	1,240	1,310	1,430	1,620	1,820	2,035
	La	mm	100	135	135	170	170	170	170	190	210
	G	kg	129	214	272	406	493	732	1,055	1,468	2,209
	GR	kg	38.2	45	67.5	74.8	119	210.4	255.6	311.3	401.1
	Jm	kgm ²	1.02	1.43	2.23	3.80	6.5	11.72	17.84	25.21	40.76
	Jm _R	kgm ²	0.239	0.494	0.716	1.28	1.93	3.02	5.38	7.87	13.3
	С	Nm/rad.	9.5 x 10 ⁵	1.42 x 10 ⁶	2.36 x 10 ⁶	3.1 x 10 ⁶	4.4 x 10 ⁶	5.19 x 10 ⁶	7.86 x 10 ⁶	9.44 x 10 ⁶	1.43 x 10 ⁷
	C _R	Nm/rad.	2.43 x 10 ⁶	5.06 x 10 ⁶	7.3 x 10 ⁶	1.3 x 10 ⁷	1.96 x 10 ⁷	3.08 x 10 ⁷	5.48 x 10 ⁷	8.03 x 10 ⁷	1.36 x 10 ⁸
0.02*	L _{z min}	mm	1,010	1,110	1,190	1,325	1,395	1,570	1,780	1,975	2,190
	L _{a min}	mm	200	220	220	250	250	310	330	345	365
	G	kg	171	275	331	515	603	796	1,158	1,589	2,367
	G _R	kg	38.2	45	67.5	74.8	119	210.4	255.6	311.3	401.1
0.03	L _{f min}	mm	660	740	820	920	990	977	1,110	1,240	1,380
	G	kg	101	156	215	301	389	538	748	1,052	1,600
	GR	kg	38.2	45	67.5	74.8	119	210.4	255.6	311.3	401.1
9.01	Lz	mm	863	983	1,063	1,205	1,275	1,363	1,550	1,750	1,955
	La	mm	100	135	135	170	170	170	170	190	210
	G	kg	130	210	269	402	487	718	1,037	1,446	2,177
9.02	Lz	mm	830	920	1,000	1,130	1,200	1,300	1,400	1,630	1,770
	La	mm	70	75	75	95	95	90	90	100	100
	G	kg	124	204	263	375	466	641	876	1,171	1,717
9.03	Lz	mm	770	865	945	1,060	1,130	1,200	1,300	1,520	1,680
	La	mm	65	75	75	85	85	70	70	80	80
	G	kg	123	197	260	371	457	602	832	1,116	1,657
9.04	Lf	mm	580	660	720	820	900	820	940	1,060	1,160
	G	kg	94	145	207	288	391	485	653	922	1,443

 $L_{z \ min}$ = Shortest possible compressed length

= Length compensation La

L_{f min} = Shortest fixed length

 $L_z + L_a = Maximum operating length$

G = Weight of shaft

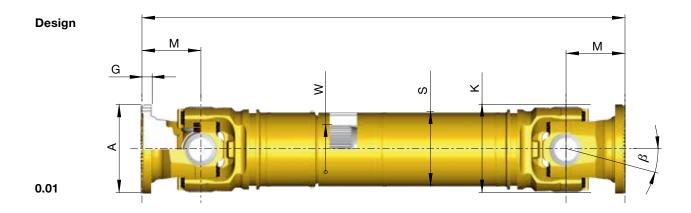
= Weight per 1,000 mm tube G_R

= Moment of inertia Jm

= Moment of inertia per 1,000 mm tube Jm_R

С = Torsional stiffness of shaft without tube

 C_{R} = Torsional stiffness per 1,000 mm tube


Larger length compensation available on request

ØН

Data sheet series 492 Maximum torque capacity

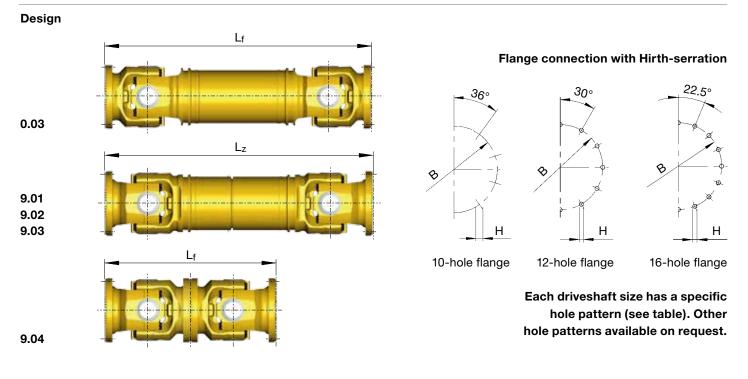
- 0.01 with length compensation, tubular design
- 0.03 without length compensation, tubular design
- 9.01 with length compensation, short design

- 9.02 with length compensation, short design
- 9.03 with length compensation, short design
- 9.04 without length compensation, double flange shaft design

Shaft size		492.60	492.65	492.70	492.	.75	492	.80	492	.85	492	2.90
Tcs	kNm	210	250	340	440	410	650	580	850	770	1,300	1,170
T _{DW}	kNm	100	115	160	210	190	280	250	400	360	600	540
L _c	-	107	332	860	2,060		7,390		17,4	400 60,		120
β	¢°	7	7	7	10	15	10	15	10	15	10	15
А	mm	285	315	350	39	0	43	35	48	80	55	50
к	mm	285	315	350	39	0	435		480		55	50
В	mm	255	280	315	350		395		445		5 ⁻	10
G	mm	35	35	40	45	5	5	0	55		65	
н	mm	15	17	17	19	9	1	9	2	1	23	
l ¹)	-	10	10	12	12	2	1	6	1	6	1	6
М	mm	200	220	240	26	0	28	80	30	00	33	30
S	mm	244.5 x 22.2	244.5 x 28	273 x 30	323.9 x 36		355.6 x 40		406.4 x 40		457	x 50
W DIN 5480	mm	185 x 5	185 x 5	210 x 5	210 x 5		210 x 5		240 x 5		290	x 8

= Functional limit torque* Tcs

Yield torque 30% over T_{CS}


 T_{DW} = Reversing fatigue torque*

= Bearing capacity factor* L_{c}

- * See specifications of driveshafts.
- β = Maximum deflection angle per joint

Number of flange holes 1)

Data sheet series 492 Maximum torque capacity

Design	Shaft si	ze	492.60	492.65	492.70	492.75	492.80	492.85	492.90
0.01	L _{z min}	mm	1,440	1,520	1,680	1,750	1,900	2,130	2,415
	La	mm	135	135	150	170	170	190	210
	G	kg	472	568	788	1,025	1,355	1,873	2,750
	G _R	kg	121	149	180	255.6	311.3	361.4	501.94
	Jm	kgm ²	4.16	5.16	7.73	15	30.7	50.4	92.7
	Jm _R	kgm ²	1.52	1.78	2.69	5.38	7.88	12.28	21.1
	С	Nm/rad.	3.32 x 10 ⁶	4.31 x 10 ⁶	5.97 x 10 ⁶	6.76 x 10 ⁶	9.7 x 10 ⁶	13.64 x 10 ⁶	19.44 x 10 ⁶
	CR	Nm/rad.	1.55 x 10 ⁷	1.82 x 10 ⁷	2.75 x 10 ⁷	5.48 x 10 ⁷	8.03 x 10 ⁷	12.51 x 10 ⁷	21.5 x 10 ⁷
0.03	L _{f min}	mm	940	1,020	1,130	1,220	1,320	1,450	1,620
	G	kg	311	407	557	819	1,040	1,330	1,880
	G _R	kg	121	149	180	255.6	311.3	361.4	501.9
9.01	Lz	mm	1,380	1,460	1,620	1,700	1,840	2,050	2,340
	La	mm	135	135	150	170	170	190	210
	G	kg	465	559	777	1,010	1,340	1,850	2,710
9.04	Lf	mm	800	880	960	1,040	1,120	1,200	1,320
	G	kg	286	374	514	780	1,000	1,300	1,830

 $L_{z \ min}$ = Shortest possible compressed length

= Length compensation La

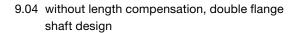
L_{f min} = Shortest fixed length

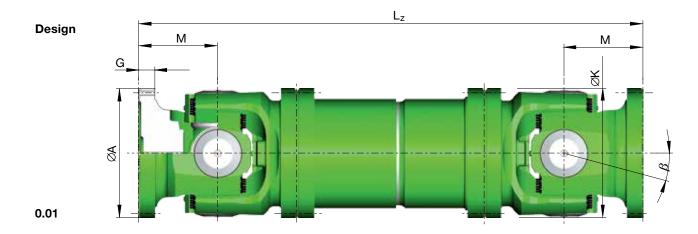
- $L_z + L_a = Maximum operating length$
- = Moment of inertia per 1,000 mm tube Jm_R

С = Torsional stiffness of shaft without tube

- = Weight of shaft G_R = Weight per 1,000 mm tube

= Torsional stiffness per 1,000 mm tube


- C_{R}
- = Moment of inertia Jm


Length dimensions (Lz/La) of the designs $0.02 \cdot 9.02 \cdot 9.03$ available on request.

G

Data sheet series 498

0.01 with length compensation, tubular design 0.03 without length compensation, tubular design

Shaft size			498.00			498.05			498.10			498.15		
T _{CS}	kNm	1,880	1,620	1,430	2,340	2,080	1,750	3,000	2,600	2,200	3,640	3,100	2,700	
T _{DW}	kNm	900	780	680	1,120	1,000	840	1,430	1,250	1,050	1,750	1,500	1,300	
Lc	-	0.115	0.144	0.154	0.224	0.322	0.343	0.530	0.684	0.720	1.09	1.35	1.43	
		x 10 ⁶												
β	¢°	5	10	15	5	10	15	5	10	15	5	10	15	
А	mm		600			650			700			750		
К	mm		600			650			700			750		
В	mm		555			605			655			695		
G	mm		75			80			90			95		
н	mm		26			26			26			32		
l ¹)	-		20			20			24			24		
М	mm	370	370	390	390	390	410	420	420	440	460	460	480	

Shaft size			498.20			498.25			498.30			498.35		
T _{CS}	kNm	4,420	3,800	3,300	5,300	4,500	4,050	6,300	5,400	4,700	7,400	6,500	5,600	
TDW	kNm	2,120	1,850	1,600	2,550	2,200	1,950	3,050	2,650	2,250	3,500	3,100	2,700	
Lc	-	1.69	2.14	2.55	3.26	4.01	4.681	7.05	7.86	8.29	9.71	10.7	14.24	
		x 10 ⁶												
β	¢°	5	10	15	5	10	15	5	10	15	5	10	15	
А	mm		800			850			900			950		
К	mm		800			850			900			950		
В	mm		745			785			835			885		
G	mm		100			105			110			120		
н	mm		32			38			38			38		
l ¹)	-		24			24			24			24		
М	mm	480	480	500	530	530	555	555	555	580	580	580	610	

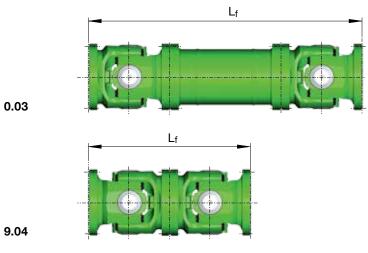
= Functional limit torque* Tcs

Yield torque 30% over $T_{\mbox{CS}}$

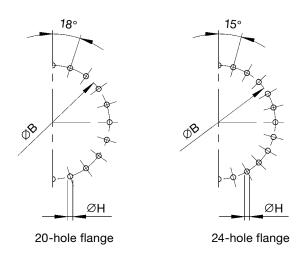
* See specifications of driveshafts.

β = Maximum deflection angle per joint

= Reversing fatigue torque* T_{DW}


= Bearing capacity factor* L_{c}

1)


Number of flange holes

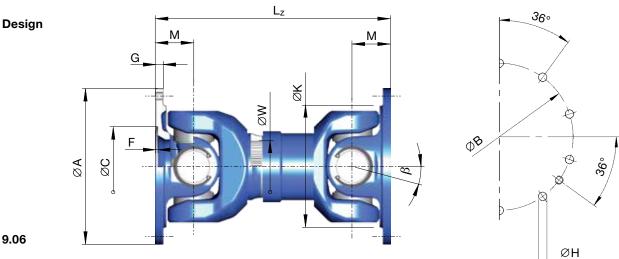
Data sheet series 498

Design

Flange connection with Hirth-serration

Each driveshaft size has a specific hole pattern (see table). Other hole patterns available on request.

Shaft size			498.40			498.45		498.50		498.55			498.60			
T _{CS}	kNm	8,700	7,500	6,500	10,000	8,700	7,500	11,500	10,000	8,600	13,200	11,400	9,900	15,000	13,000	11,200
T _{DW}	kNm	4,200	3,600	3,100	4,800	4,200	3,600	5,500	4,800	4,100	6,300	5,500	4,700	7,200	6,200	5,400
Lc	-	16.1	17.4	23.78	24.4	28.71	38.73	36.4	42.63	61.67	56.3	70.8	96.19	89.9	102	147.2
		x 10 ⁶														
β	¢°	5	10	15	5	10	15	5	10	15	5	10	15	5	10	15
A	mm		1,000			1,050			1,100			1,150			1,200	
к	mm		1,000			1,050			1,100			1,150			1,200	
В	mm		925			975			1,025			1,065			1,115	
G	mm		125			130			135			140			150	
н	mm		44			44			44			50			50	
l ¹)	-		20			20			20			20			20	
М	mm	625	625	655	645	645	675	670	670	700	715	715	745	740	740	775


GWB® driveshaft series "598" in fully forged design with maximum torque capacity are available on request.

Length dimensions (L_z/L_f/L_a) of the designs 0.01 \cdot 0.03 \cdot 9.04 available on request.

Data sheet series 587/190 Super short designs

9.06 driveshaft with length compensation, super short design

Series 587

9.06

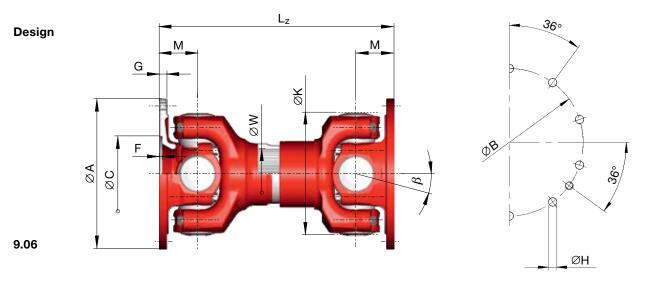
Shaft size		587.50	190.55	190.60	190.65	190.70
T _{CS}	kNm	23	33	46	68	94
T _{DW}	kNm	8.5	11	21	25	36
Lc	-	1.84	7.0	58.5	166	510
β	¢°	5	5	5	5	5
A	mm	275	305	348	360	405
К	mm	215	250	285	315	350
B ± 0.1 mm	mm	248	275	314	328	370
C H7	mm	140	140	175	175	220
F ¹)	mm	4.5	5.5	6	6	6.5
G	mm	15	15	18	18	22
H + 0.2 mm	mm	14.1	16.1	18.1	18.1	20.1
l ²)	-	10	10	10	10	10
М	mm	68	80	90	100	108
W DIN 5482/5480	mm	90 x 2.5	100 x 94	100 x 94	130 x 3	150 x 3

10-hole flange

Yield torque 30% over $T_{\mbox{CS}}$

= Reversing fatigue torque*

= Bearing capacity factor*


- * See specifications of driveshafts.
- β = Maximum deflection angle per joint
- 1) Effective spigot depth
- 2) Number of flange holes

 T_{DW}

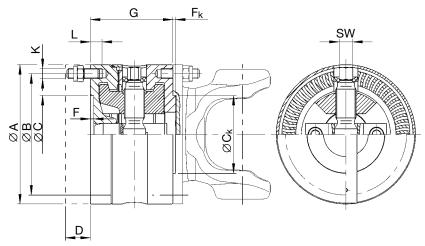
 L_{c}

Data sheet series 587/190 Super short designs

Series 190

10-hole flange

Design	Shaft size		587.50	190.55	190.60	190.65	190.70
9.06	Lz	mm	415	495	545	600	688
	La	mm	40	40	40	40	55
	G	kg	60	98	120	169	256
	Jm kgm ²		0.33	0.624	1.179	2.286	3.785


G = Weight of shaft

La $L_z + L_a = Maximum$ operating length Jm

Data sheet series 330 Quick release couplings

Design

with spiral serration for higher speeds

Connection for series687/688Connection for series587Connection for series392with face key392

For hole distribution, see data sheets of the corresponding driveshaft.

Coupling size			330.10	330.20	330.30	330.40	330	.50		330.55	
Shaft connection			687/688.15	687/688.20	687/688.25 687/688.3 687/688.35 687/688.4		687/688.45 687/688.65	587.50	392.50	587.55	392.55
Model		Nr.	000	003	003	003	000		001	000	001
	А	mm	100	130	150	180	225		225	250	250
	В	mm	84	101.5	130	155.5	196		196	218	218
	C ¹⁾	mm	57	75	90	110	140		105	140	105
	C _k ¹¹	mm	57	75	90	110	140		105	140	105
	D ²⁾	mm	20	38	40	40	45		45	45	45
	F	mm	2.5	2.5	3,5	4	5		5	6	6
	Fk	mm	2.3-0.2	2.3-0.15	2.3-0.2	2.3-0.15	4-0.2		4-0.2	5-0.2	5-0.2
	G	mm	76	100	100	112	144		144	148	162
	1 ³⁾	-	6	8	8	8	8		8	8	8
	K ⁴)	-	M 8 x 18	M 10 x 22	M 12 x 25	M 14 x 28	M 16 x 35		M 16 x 40	M 18 x 40	M 18 x 45
	L ¹⁰⁾	mm	10	11	14	20	18		18	21	21
	G _k ¹²⁾	kg	4.7	7.5	10.6	16.4	34		36	40	49
Ta Nut		Nm	35	69	120	190	295		295	405	405
Extension ⁵⁾	Extension ⁵) Nr.		2,365/13 M	2,365/17 M	2,365/19 M	22 M	24 R		24 R	27 R	27 R
Ta Spindle	le Nm 30 45 80 100 190 190		190	220	220						
Socket wrench ⁶⁾ Nr.			½" D 19	SW 13	½" D D 19 S	W 17	½" D D 19 SW 22				

#) means to see the related footnotes on opposite page

Operating instructions

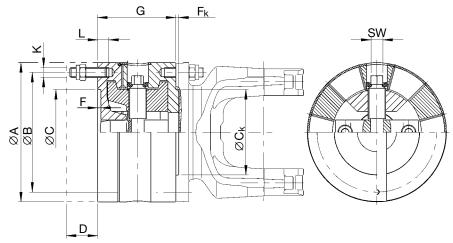
Engaging and disengaging the coupling

Engaging and disengaging are done by operating the threaded spindle located in the inner part of the coupling. The spindle can be reached from two sides and be operated. The spindle is tightened by means of a socket wrench (see table).

Notice:

1. Before engaging the coupling, make sure that the coupling teeth are properly fitted.

2. The engagement direction is marked by arrows. The spindle may be tightened either clockwise or counterclockwise.


3. The joint with the coupling component falls back when disengaged. **Caution: Danger of injury!**

In case of a subsequent installation of the quick release coupling, the driveshaft must be correspondingly shorter. The threaded spindles of the coupling are lubricated by the supplier with MoS_2 . Relubrication is recommended at least 2 times per year.

Data sheet series 230 Quick release couplings

Design

with trapezoidal serration for speeds up to 1,000 rpm

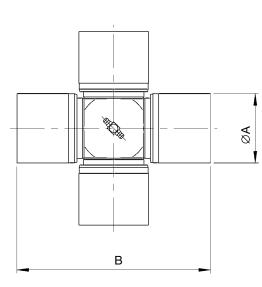
Connection for series 390 Connection for series 392/393 with face key

For hole distribution, see data sheets of the corresponding driveshaft.

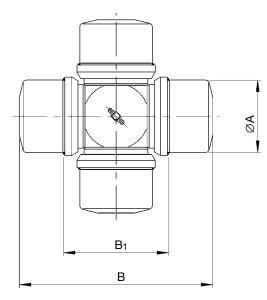
Coupling size			230.60		230.65		230.70		230.75		230.80	
Shaft connection			390.60	392.60	390.65	392.65	390.70	392.70	390.75	393.75	390.80	393.80
Model		Nr.	000	001	000	001	000	001	000	001	000	001
	А	mm	285	285	315	315	350	350	390	390	435	435
	В	mm	245	245	280	280	310	310	345	345	385	385
	C ¹⁾	mm	175	125	175	130	220	155	250	170	280	190
	Ck ¹¹⁾	mm	175	125	175	130	220	155	250	170	280	190
	D ²⁾	mm	64	64	66	66	72	72	82	82	92	92
	F	mm	7	7	7	8	8	8	8	8	10	10
	F _k	mm	6-0.2	6–0.5	6-0.2	7–0.5	7–0.3	7–0.5	7–0.2	7–0.5	9–0.5	9–0.5
	G	mm	160	174	172	192	184	204	196	220	226	246
	1 ³⁾	-	8	8	8	10	10	10	10	10	10	16
	K ⁴)	-	M 20 x 55	M 20 x 55	M 22 x 50	M 22 x 60	M 22 x 50	M 22 x 60	M 24 x 55	M 24 x 70	M 27 x 65	M 27 x 75
	L ¹⁰⁾	mm	23	23	25	25	25	25	27	27	30	30
	Gk ¹²⁾	kg	66	71	83	95	110	120	143	150	210	230
Ta Nut		Nm	580	580	780	780	780	780	1,000	1,000	1,500	1,500
Extension 5)		Nr.	30 R	30 R	32 R	32 R	32 R	32 R	36 R	36 R	41 R	41 R
Ta Spindle		Nm	290	290	400	400	550	550	680	680	950 ⁹⁾	950 ⁹⁾
Socket wrench 6)		Nr.	¾" D 32 \$	SW 22	34" D 32	2 SW 27	34" D 32	2 SW 27	34" D 32	2 SW 32	34" D 32	2 SW 36
X = 4 spanners ⁸⁾		Nr.					-				TD	750

#) means to see the related footnotes below

Related Footnotes:


- 1. Spigot fit H7
- 2. Disengaging movement for separation of the coupling
- 3. Number of stud bolts per flange
- 4. Dimensions of the bolt connections Stud bolt DIN 938 Self-locking hexagon nut DIN 980
- 5. Jaw or ring extension in accordance with Dana standard N 4.2.5
- 6. Gedore socket spanner set for tightening the spindle
- 7. Rahsol torque meter
- 8. Force multiplier spanner x = 4 (TD 750)
- 9. Adjusting moment of the torque wrench 756 C = 238 $\ensuremath{\mathsf{Nm}}$
- 10. Thread depth
- 11. Fit h6 up to series 390
- Fit f8 for series 392/393
- 12. G_k = Weight of coupling
- Ta = Tightening torques of flange boltings and of the threaded coupling spindles

Torque wrench ⁷⁾	Torque	erange
Туре	from	to
756 B	20 Nm	100 Nm
756 C	80 Nm	300 Nm
756 D	280 Nm	760 Nm


Data sheet Journal cross assemblies (unit packs)

Design

7.06 journal cross, complete

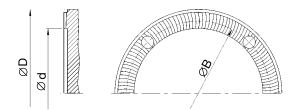
Shaft size	ØA	В
Shart Size	mm	mm
473.10	15	41
473.20	19	49.2
473.30	22	59
287.00	26	69.8
287.10	30	81.8
287.20	35	96.8
587.10	35	96.8
587.15	42	104.5
587.20	48	116.5
587.30	52	133
587.35/36	57	144
587.42	57	152.06
587.48	65	172
587.50	72	185
587.55	74	217
587.60	83	231.4
687/688.15	27.0	74.5
687/688.20	30.2	81.8
687/688.25	34.9	92.0
687/688.30	34.9	106.4
687/688.35	42.0	119.4
687/688.40	47.6	135.17
687/688.45	52.0	147.2
687/688.55	57.0	152.0
687/688.65	65.0	172.0

Journal cross assemblies are only supplied as complete units. For orders, please state shaft size or, if known, the drawing number of the complete driveshaft. For lubrication of journal cross assemblies, see Installation and Maintenance/Safety Instructions.

* The dimensions of the journal cross assemblies for series 392/393 are equal to 292.

Shaft size	А	В	B ₁	
Shart Size	mm	mm	mm	
190.50	65	220	143	
190.55	74	244	154	
190.60	83	280	175	
190.65	95	308	190	
190.70	110	340	210	
190.75	120	379	235	
190.80	130	425	262	
390.60	83	235.8	129	
390.65	95	258.8	139	
390.70	110	293.4	160	
390.75	120	325.2	176	
390.80	130	363.2	196	
392.50*	74	222	129	
392.55*	83	246	139	
392.60*	95	279.6	160	
392.65*	110	309.6	176	
392.70*	120	343.4	196	
393.75*	130	383.4	216	
393.80*	154	430	250	
393.85*	170	464	276	
393.90*	195	530	315	

Ultra heavy-duty unit pack sets for series 398 have been discontinued. They are still available for series 492 and 498 on request.



Data sheet Flange connection with serration

Hirth-serration						
 Flank angle 40° 		D mm	d mm	z	B mm	j*
High transmission capacity	I T	225	180	48	200	8 x M 12
Form locking	IH /=	250	200	48	225	8 x M 14
Self-centering		285	225	60	255	10 x M 14
• Sen-Centening		315	250	60	280	10 x M 16
		350	280	72	315	12 x M 16
		390	315	72	350	12 x M 18
		435	345	96	395	16 x M 18
		480	370	96	445	16 x M 20
	Ros III	550	440	96	510	16 x M 22
		600	480	120	555	20 x M 24
		650	520	120	605	20 x M 24
		700	570	120	655	24 x M 24
		750	600	144	695	24 x M 30
		800	650	144	745	24 x M 30
		850	680	144	785	24 x M 36
		900	710	144	835	24 x M 36
		950	760	144	885	24 x M 36
		1,000	800	180	925	20 x M 42 x 3
		1,050	840	180	975	20 x M 42 x 3
		1,100	880	180	1,025	20 x M 42 x 3
		1,150	925	180	1,065	20 x M 48 x 3
		1,200	960	180	1,115	20 x M 48 x 3

KlingeInberg-serration

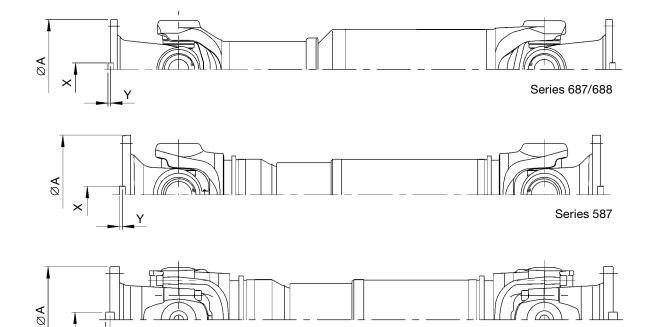
- Flank angle 25°
- High transmission capacity
- Form locking
- Self-centering

D mm	d mm	z	B mm	i
95	65	16	84	4 x M 8
115	80	24	101.5	4 x M 10
145	110	24	130	4 x M 12
175	140	32	155.5	4 x M 16
215	175	48	196	4 x M 16
240	195	48	218	4 x M 18
275	220	48	245	4 x M 20
305	245	48	280	4 x M 20
340	280	72	310	4 x M 22
380	315	72	345	6 x M 24
425	355	96	385	6 x M 27
465	390	96	425	8 x M 30
535	455	96	492	8 x M 30

D = Outside diameter

d = Inside diameter

Z = Number of teeth B = Pitch diameter


i = Number and size of bolts Bolt material: 10.9

* Reduced number of bolts by special arrangement only (e.g., for use as quickchange system)

Other diameters available on request.

Data sheet Face key connection series 687/688/587/390

The driveshaft for series 687/688/587/390 can also be manufactured with face key connection on request.

φŧ

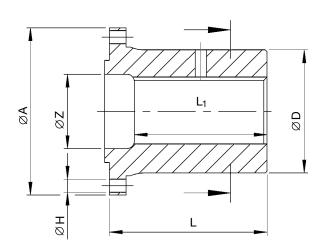
Driveshaft connection							
	Shaft size	ØA mm	I ²⁾ x H ¹⁾	X e9 mm	Y mm		
	687/688.35 687/688.40	150	8 x 13	20	4.0		
	687/688.45 687/688.55 687/688.65	180	8 x 15 10 x 17 10 x 17	25	4.5		
	587.50	225	8 x 17	32	5.5		
	587.55 587.60	250 285	8 x 19 8 x 21	40 45	7.0 8.0		
	390.60	285	8 x 21	45	8.0		
	390.65 390.70	315 350	8 x 23 10 x 23	45 50	8.0 9.0		
	390.70	390	10 x 23	50	9.0		
	390.80	435	10 x 28	63	12.0		

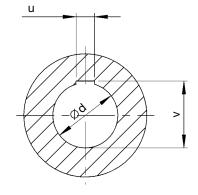
#) means to see the related footnotes below

 \times

Y

Related Footnotes:


1. Tolerance + 0.2 mm (for 390.75 and 390.80, tolerance + 0.5 mm) 2. Number of flange holes



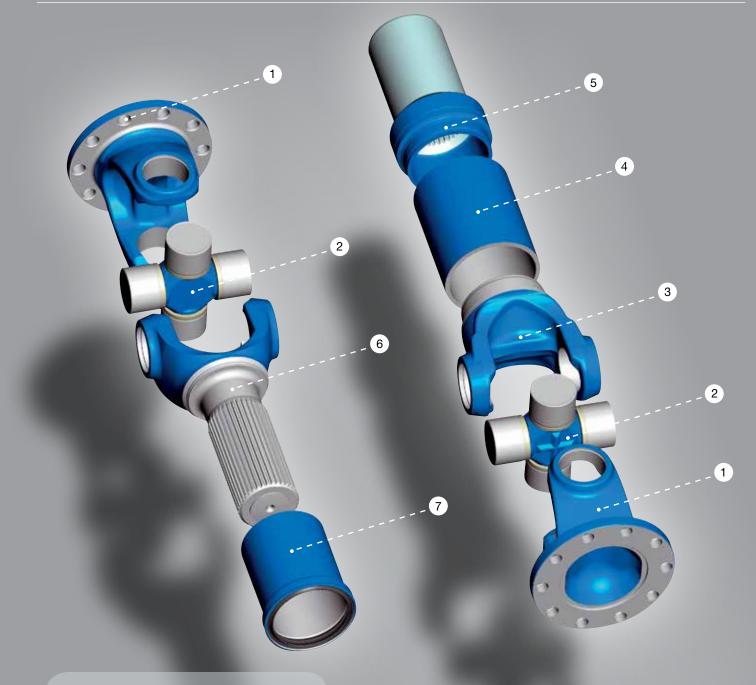
65

Data sheet Standard companion flanges

Standard companion flanges can be manufactured with cylindrical bore holes and face keyway (material C45; hardened and tempered 750 – 900 N/mm²) on request. For designs deviating from the standard, e.g., oil pressure connection, conical bore, flat journal, and material, relevant drawings are required.

Please state with your order:

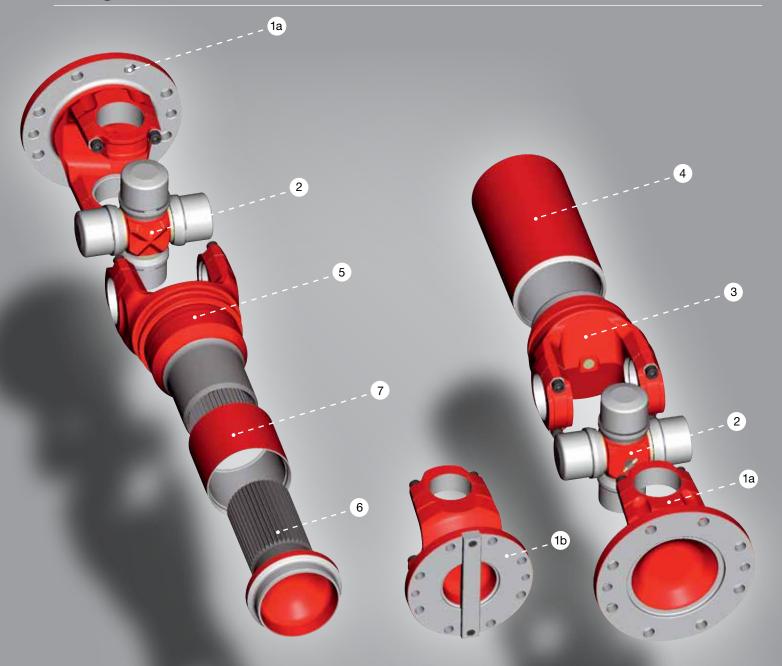
Shaft size	=		
Flange dia. A	=		mm
I x H	=	_ number of holes x \varnothing	mm
L	=		mm
L ₁	=		mm
z	=		mm
D	=		mm
d	=		mm
u	=		mm
V	=		mm


	Driveshaft connection		Dimension
Shaft size	ØA	I ²⁾ x H ¹⁾	Ø D _{max}
	mm		mm
687/688.15	100	6 x 8.25	69.5
687/688.20			
687/688.15		8 x 10.25	84
687/688.20	120		
687/688.25			
687/688.30			
687/688.25	150	8 x 12.25	
687/688.30		8 x 12.25	110.3
687/688.35		8 x 12.1	
687/688.40		8 x 12.1	
687/688.35		8 x 14.1	132.5
687/688.40	180		
687/688.45			
687/688.55		10 x 16.1	
687/688.65			
687/688.45			
687/688.55	225	8 x 16.1	171
687/688.65			
587.50			
587.50	250	8 x 18.1	189
587.55			
587.60	285	8 x 20.1	213
390.60			
390.65	315	8 x 22.1	247
390.70	350	10 x 22.1	277
390.75	390	10 x 24.1	308
390.80	435	10 x 27.1	342

#) means to see the related footnotes below

Related Footnotes:

1. Tolerance + 0.2 mm (for 390.75 and 390.80, tolerance + 0.5 mm) 2. Number of flange holes


Design features series 687/688/587

Main components of the driveshafts

- 1. Flange yoke
- 2. Journal cross assembly
- 3. Tube yoke
- 4. Tube
- 5. Sliding muff
- 6. Yoke shaft
- 7. Cover tube assembly

Design features series 390/392/393

Main components of the driveshafts

- 1a. Flange yoke for series 390 (friction connection)
- 1b. Flange yoke for series 392/393 (face key connection)
- 2. Journal cross assembly
- 3. Tube yoke
- 4. Tube
- 5. Tube yoke with sliding muff
- 6. Slip stub shaft
- 7. Cover tube assembly

General theoretical instructions

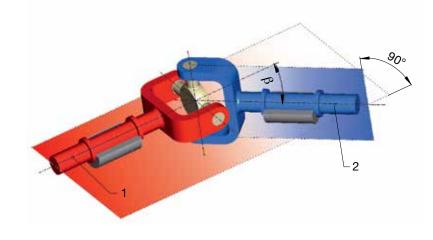
Kinematics of Hooke's joints

1. The joints

In the theory of mechanics, the cardan joint (or Hooke's joint) is defined as a spatial or spherical drive unit with a non-uniform gear ratio or transmission. The transmission behavior of this joint is described by the following equation:

$$\alpha_2 = \arctan\left(\frac{1}{\cos\beta} \cdot \tan\alpha_1\right)$$

$$\begin{split} \beta &= \text{Deflection angle of joint } [s^{\circ}] \\ \alpha_1 &= \text{angle of rotation drive side} \\ \alpha_2 &= \text{angle of rotation driven side} \end{split}$$


In this equation, α_2 is the momentary rotation angle of the driven shaft 2. The motion behavior of the driving and the driven ends is shown in the following diagram. The asynchronous and/or non-

 $\int_{\varphi_{K}}^{\alpha_{2}} \frac{3}{2}\pi$

π π

2

0

homokinematic running of the shaft 2 is shown in the periodical oscillation of the asynchronous line α_2 around the synchronous line α_1 (dotted line).

'α1

φ_K

3π/2

2π

a

π

π/2

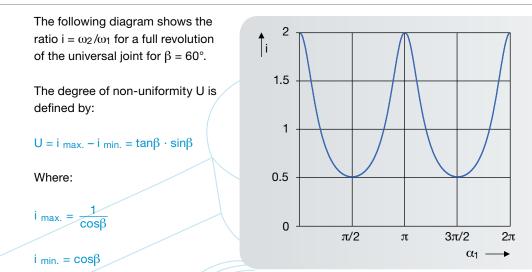
A measure for the non-uniformity is the difference of the rotation angles α_2 and α_1 or the transmission ratio of the angular speeds ω_2 and ω_1 . Expressed by an equation, that means:

a) Rotation angle difference:

$$\varphi_{\rm K} = \alpha_2 - \alpha_1$$

601

(also called gimbal error)


$$\varphi_{K} = \arctan\left(\frac{1}{\cos\beta} \cdot \tan\alpha_{1}\right) - \alpha_{1}$$
$$\varphi_{K \max} = \arctan\left(\frac{\cos\beta - 1}{2\sqrt{\cos\beta}}\right)$$
b) Ratio:

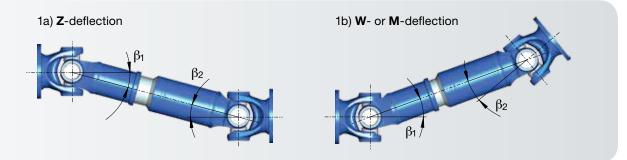
 $1 - \sin^2\beta \cdot \cos^2\alpha_1$

General theoretical instructions

10° 1 Degree of non-uniformity U Angular difference $\phi_{K\,\text{max.}}$ 0.9 9° 0.8 8° 0.7 7° 6° 0.6 $\phi_{\mathsf{K}\,\mathsf{max.}}$ 5° 0.5 4° 0.4 3° 0.3 U 2° 0.2 **1**° 0.1 0° 0° 20° 25° 0° 5° 10° 15° 30° 35° 40° 45° Deflection angle β

The diagram shows the course of the degree of non-uniformity U and of the angular difference $\Phi_{K max.}$ as a function of the deflection angle of the joint from 0 to 45°.

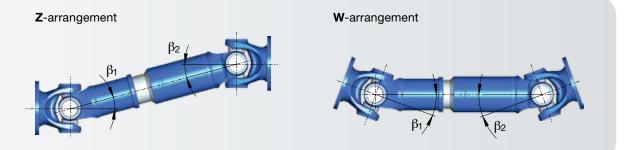
From the motion equation it is evident that a homokinematic motion behavior corresponding to the dotted line under 45° – as shown in the diagram – can only be obtained for the deflection angle $\beta = 0^\circ$. A synchronous or homokinematic running can be achieved by a suitable combination or connection of two or more joints.


2. The universal shaft

The rotation angle difference ϕ_{K} or the gimbal error of a deflected universal joint can be offset

under certain installation conditions with a second universal joint. 1. The deflection angles of both joints must be equal (i.e., $\beta_1 = \beta_{21}$)

The constructive solutions are the following:


Two arrangements are possible:

2. The two joints must have a kinematic angular relationship of 90° $(\pi/2)$, (i.e., the yokes of the connecting shaft are in one plane). For a more intensive study of universal shaft kinematics, please refer to the VDI-recommendation 2722 and to the relevant technical literature.

Operating angles

The most common arrangements are the Z- and W-deflections. To begin, consider the system in which the shafts to be connected are in the same plane.

Maximum permissible angle difference

The condition $\beta_1 = \beta_2$ is one of the essential requirements for a uniform output speed condition and cannot always be fulfilled. Therefore, designers and engineers will often ask for the permissible difference between the deflection angles of both joints. The deflection angles for hightorque and high-speed machine drives should be equal. If not, the difference should be limited to 1° to 1.5°.

Greater differences of about 3° to 5° are acceptable without disadvantages in low-speed applications. For applications with varying deflection conditions, it is important to obtain uniformity, if possible, over the complete deflection range.

Deflection in two planes means that the deflection is both horizontal and vertical. The combination of two identical types of deflection (Z/Z or W/W) and identical deflection angles ensure uniformity. For a combination of Z- and W-deflection, the inner yokes must be offset. Please consult with Dana application engineers to determine the proper amount of angular offset.

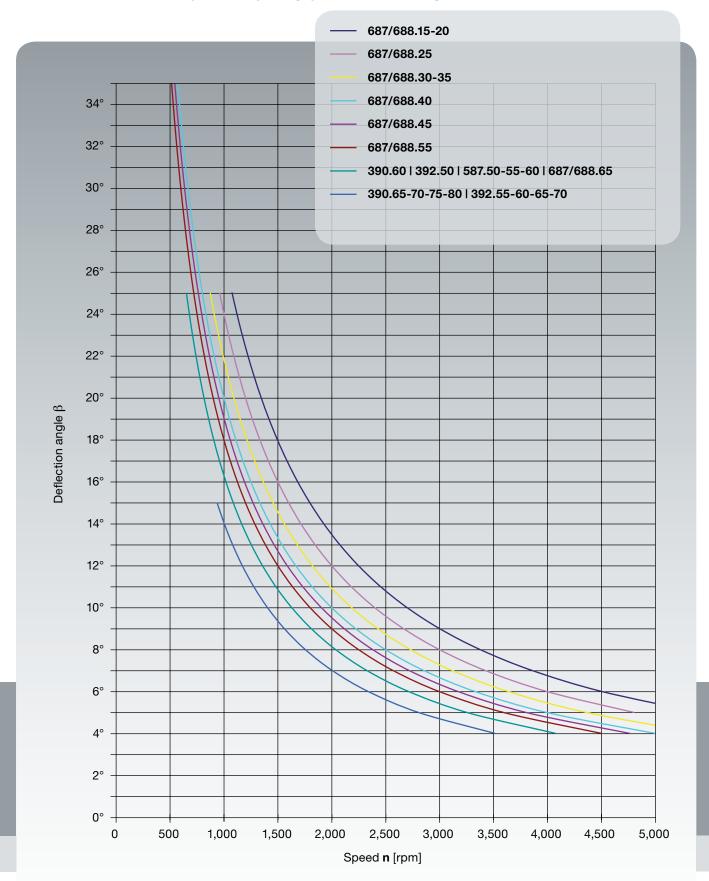
Determination of the maximum permissible operating deflection angle $\boldsymbol{\beta}$

Depending on the driveshaft series, the maximum deflection angle per joint is $\beta = 5^{\circ}$ to 44°. Due to the kinematic conditions of the cardan joint, as described before, the deflection angle must be limited in relation to the speed.

Calculations and observations of many applications have shown that certain mass acceleration torques of the center part must not be exceeded in order to guarantee smooth running of the drive systems. This acceleration torque depends on the

Product of speed and deflection angle $\textbf{D} = \textbf{n} \cdot \boldsymbol{\beta}$

and the moment of inertia of the middle part of the shaft. The parameter D is proportional to the angular acceleration of the driveshaft center part \mathcal{E}_2 .


$\mathcal{E}_2 \sim \mathbf{D} = \mathbf{n} \cdot \boldsymbol{\beta}$

- n = Operating speed [rpm]
- β = Deflection angle of joint [$\dot{\ast}$ °]
- \mathcal{E}_2 = Angular acceleration of driveshaft center part

The maximum permissible deflection angle at a given speed and an average driveshaft length can be determined from the following diagram.

Limits for the product of operating speed and deflection angle

Speed

Checking the critical torsional speed

The plant or vehicle manufacturer has to prevent the use of driveshafts within the critical torsional speed ranges of the drive. Therefore, the determination of the critical torsional speed ranges of the drive system is required. The values for the moment of inertia and torsional stiffness of the selected driveshaft can be taken from the data sheets or be supplied upon request.

Checking the critical bending speed

Except for short and rigid designs, driveshafts are flexible units with critical bending speeds and flexural vibrations that have to be checked. To accomplish this, the first and possibly second order critical bending speeds are important.

For safety reasons, the maximum permissible operating speed must be at a sufficient distance from the critical bending speed.

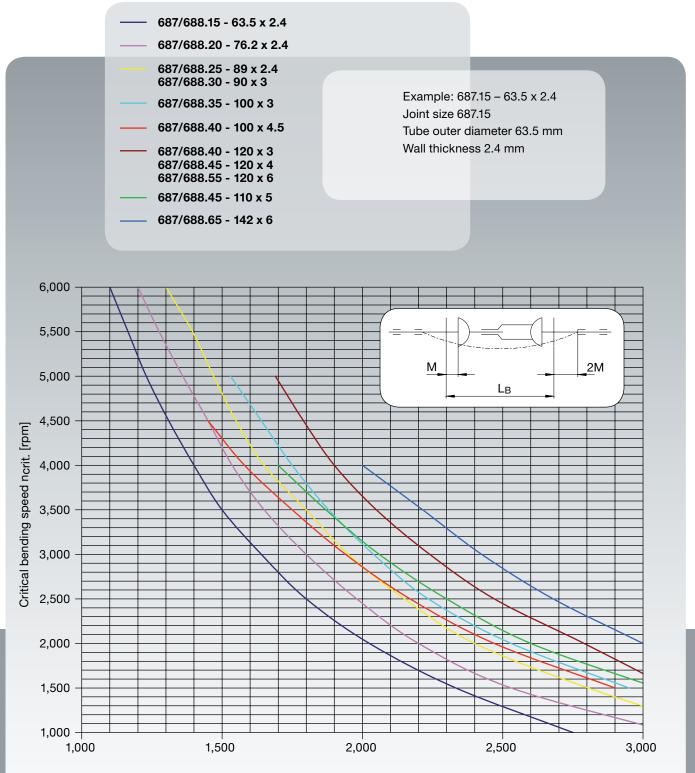
$n_{perm. max. \simeq} 0.8 \cdot n_{crit.}$ [rpm]

The critical bending speed for a particular shaft size is deter-mined by the length and the tube diameter only (see diagram). For greater length dimensions, the tube diameter has to be increased. The diameter is limited because of the ratio to the shaft size. Therefore, single driveshafts can only be provided up to a certain length. All installations exceeding this limit have to be equipped with subdivided drive lines.

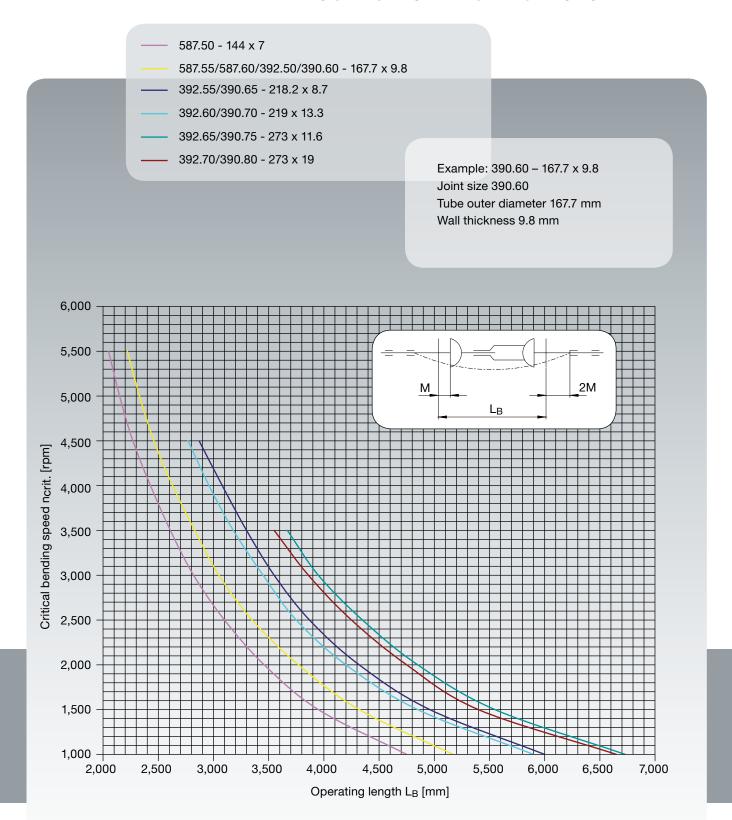
For determination of the critical bending speed, see the following selection diagrams.

These diagrams only apply to driveshafts that are installed with solid bearing supports located close to the flange.

Different installations (e.g., units with elastic mounting bearing) must have lower critical bending speeds.


Depending on the type of the plant, excitations of second order can cause flexible vibra-tions. Please contact Dana engineers if the deflection angle exceeds 3° and for greater length dimensions.

Series 687/688


Determination of the critical bending speed depending on the respective operating length

Operating length L_B [mm]

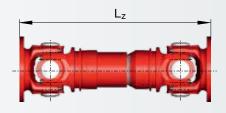
Series 587/390/392

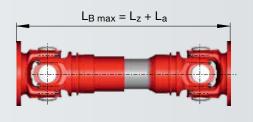
Determination of the critical bending speed depending on the respective operating length

Length dimensions

The operating length of a driveshaft is determined by:

- the distance between the driving and the driven units
- the length compensation during operation


The following abbreviations are used:


L_z = Compressed length

This is the shortest length of the shaft. A further compression is not possible.

L_a = Length compensation

The driveshaft can be expanded by this amount. An expansion beyond that dimension is not permissible. $L_z + L_a = Maximum permissible$ operating length L_{Bmax} .

During operation, the driveshaft can be expanded up to this length. The optimum working length L_B of a driveshaft is achieved if the length compensation is extracted by onethird of its length.

Arrangements of driveshafts

A tandem arrangement of driveshafts could become necessary

to cope with greater installation

Basic forms of shaft combina-

lengths.

tions:

$L_B = L_z + \frac{1}{3}L_a \quad [mm]$

This general rule applies to most of the arrangements. For applications where larger length alterations are expected, the operating length should be chosen in such a way that the movement will be within the limit of the permissible length compensation.

Driveshaft with intermediate shaft

6 ભ

Driveshaft with two intermediate shafts

Two driveshafts with double intermediate bearing

In such arrangements, the individual yoke positions and deflection angles should be adjusted with regard to one another in such a way that the degree of non-uniformity (see General theoretical instructions) and the reaction forces acting on the connection bearings (see Technical instructions for application) are minimized.

Load on bearings of the connected units

Axial forces

For the design of a driveshaft, it must be taken into account that axial forces can occur. These forces must be absorbed by axial thrust bearings of the connected units.

Axial forces will occur during length variations in the driveshaft. Additional axial forces are caused by increasing torque and by increasing pressure during lubrication of the splines. These forces will decrease automatically and can be accelerated by the installation of a relief valve.

The axial force A_k is a combination of two components:

1. Frictional force F_{RL} This is the force that occurs in the length compensation. It can be determined from:

$F_{RL} = T \cdot \frac{\mu}{r_{m}} \cdot \cos \beta$

F_{RL} = Frictional force from the length compensation [N]

It depends on:

- T = Torque of the driveshaft [Nm]
- r_m = Pitch circle radius in the sliding parts of the driveshaft [m]
- μ = Friction coefficient (depends on spline treatment):
 - 0.08 for plastic-coated splines
 - 0.11 for steel/steel (greased)
- β = Operating deflection angle

2. Power F_p

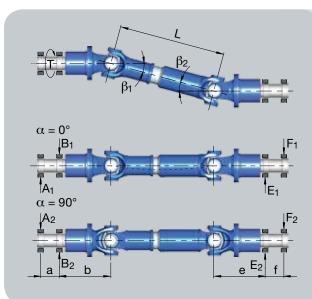
This force occurs in the length compensation due to the increasing pressure in the lubrication grooves of the driveshaft.

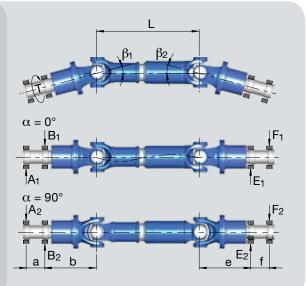
The force depends on the lubrication pressure (maximum permissible pressure is 15 bar).

- 45

Dana's environmental protection management policy

An important feature of Dana's environmental protection management policy is dedication to product responsibility. Because of this commitment, the effect of driveshafts on the environment is given considerable attention. GWB[®] driveshafts are lubricated with lead-free grease, their paint finishes are low in solvents and free of heavy metals, and they are easy to maintain. After use, they can be introduced into the recycling process.


Calculation scheme of radial forces on connecting bearings


Driveshaft in Z-arrangement

Driveshaft in W-arrangement

Position 0°, flange yoke right-angled to drawing plane, Position $\pi/2$, flange yoke in drawing plane

Position 0°, flange yoke right-angled to drawing plane, Position $\pi/2$, flange yoke in drawing plane

$\alpha = 0^{\circ} A_1 = T \cdot \frac{\cos\beta_1 \cdot b}{L \cdot a} \cdot (\tan\beta_1 - \tan\beta_2)$
$B_1 = T \cdot \frac{\cos\beta_1 (a + b)}{L \cdot a} \cdot (\tan\beta_1 - \tan\beta_2)$
$F_1 = T \cdot \frac{\cos\beta_1 \cdot e}{L \cdot f} \cdot (\tan\beta_1 - \tan\beta_2)$
$E_1 = T \cdot \frac{\cos\beta_1 \cdot (e + f)}{L \cdot f} \cdot (\tan\beta_1 - \tan\beta_2)$
$\alpha = \pi/2 = 90^{\circ} A_2 = B_2 = T \cdot \frac{\tan\beta_1}{a}$
$F_2 = E_2 = T \cdot \frac{\sin\beta_2}{f \cdot \cos\beta_1}$

$\alpha = 0^{\circ}$	$A_1 = T \cdot \frac{\cos}{L}$	<u>3₁ · b</u> · a	$n\beta_1 + tan\beta_2$)
	$B_1 = T \cdot \frac{\cos\beta_1}{L}$	<u>(a + b)</u> · (tar · a	$n\beta_1 + tan\beta_2)$
	$F_1 = T \cdot \frac{\cos t}{L}$	<u>3₁ · e</u> · f	$1\beta_1 + \tan\beta_2$)
	$E_1 = T \cdot \frac{\cos \beta_1}{L}$	<u>· (e + f)</u> · (tar · f	$1\beta_1 + \tan\beta_2$)
$\alpha = \pi/2$	$= 90^{\circ} A_2 = B_2$	= T · <u>tanβ</u>	_
	$F_2 = E_2$	$= T \cdot \frac{\sin\beta_2}{f \cdot \cos\beta_2}$	31

Driveshaft arrangement with $\beta_1 = \beta_2$ equal deflection angles and a = f, b = eequal bearing distances $\alpha = 0^{\circ}$ $A_1 = F_1 = B_1 = E_1 = 0$

$$\alpha = \pi/2 = 90^{\circ} \quad A_2 = B_2 = T \cdot \frac{\tan\beta_1}{a}$$
$$F_2 = E_2 = T \cdot \frac{\tan\beta_1}{a}$$

$$\alpha = 0^{\circ} \quad A_{1} = F_{1} = 2T \cdot \frac{\sin\beta_{1} \cdot b}{L \cdot a}$$
$$B_{1} = E_{1} = 2T \cdot \frac{\sin\beta_{1} (a + b)}{L \cdot a}$$
$$\alpha = \pi/2 = 90^{\circ} \quad \text{See Z-arrangement } \alpha = \pi/2$$

Balancing of driveshafts

The balancing of driveshafts is performed to equalize eccentrically running masses, therefore preventing vibrations and reducing the load on any connected equipment.

Balancing is carried out in accordance with ISO Standard 1940, "Balance quality of rotating rigid bodies". According to this standard, the permissible residual unbalance is dependent on the operating speed and mass of the balanced components.

Dana's experience has shown that balancing is not normally required for rotational speeds below 500 rpm. In individual cases, this range may be extended or reduced, depending on the overall drivetrain characteristics.

Driveshafts are balanced in two planes, normally to a balancing accuracy between G16 and G40.

- Balancing speed The balancing speed is normally the maximum speed of the system or vehicle.
- Quality grade

In defining a quality grade, it is necessary to consider the reproducibility levels achievable in the customer's own test rig during verification testing. Quality grades are dependent on the following variables:

- Type of balancing machine (hard, rigid or soft suspension)
- Accuracy of the measuring system
- Mounting tolerances
- Joint bearing radial and axial play
- Angular backlash in longitudinal displacement direction

Field analyses have shown that the sum of these factors may result in inaccuracies of up to 100%. This observation has given rise to the definition of the following balancing quality grades:

- Producer balancing: G16
- Customer verification tests:
 G32

G 40	Car wheels, wheel rims, wheel sets, driveshafts Crankshaft/drives of elastically mounted, fast four-cycle Engines (gasoline or diesel) with six or more cylinders Crankshaft/drives of engines of cars, trucks, and locomotives
G 16	Driveshafts with special requirements Parts of crushing machines and agricultural machinery Individual components of engines (gasoline or diesel) for cars, trucks, and locomotives Crankshaft/drives of engines with six or more cylinders under special requirements
G 6.3	Parts of process plant machines Marine main turbine gears (merchant service) Fans, flywheels, centrifuge drums Paper machinery rolls, print rolls Assembled aircraft gas turbine rotors Pump impellers
G 2.5	Gas and steam turbines, including marine main turbines (merchant service) Rigid turbo-generator rotors Turbo-compressors, turbine-driven pumps Machine tool drives Computer memory drums and discs Extract from DIN ISO 1940/Part 1

Selection of GWB® driveshafts

The design of driveshafts must exclude all possible danger to people and material by secured calculation and test results, as well as other suitable steps (see Installation and Maintenance/ Safety Instructions).

The selection procedure described on these pages is only a general recommendation. Please consult Dana engineers for the final design for your application.

The selection of a driveshaft should be based on the following conditions:

- 1. Specifications of driveshafts
- 2. Selection by bearing life
- 3. Operational dependability
- 4. Operating angles
- 5. Speed
- 6. Length dimensions
- 7. Load on bearings of the connected units

1. Specifications of driveshafts

T_{CS} = Functional limit torque [Nm]

Up to this maximum permissible torque, a load may be applied to a driveshaft for a limited frequency without the working capability being affected by permanent deformation of any driveshaft functional area. This does not result in any unpermissible effect on bearing life.

Yield torque

This torque level leads to irreversible plastic deformation of the driveshaft which could result in a failure of the complete drive system.

T_{DW} = Reversing fatigue torque [Nm]

At this torque, the driveshaft is permanently solid at alternating loads. The values for driveshafts of series 687/688 with welded balancing plates are lower. With a fatigue torque of this order, the transmission capacity of the flange connection must be checked.

T_{DSch} = Pulsating fatigue torque [Nm]

At this torque, the driveshaft is permanently solid at pulsating loads.

$T_{DSch} = 1.4 \cdot T_{DW}$

Lc = Bearing capacity factor

The bearing capacity factor takes into consideration the dynamic service life C_{dyn} (see DIN/ISO 281) of the bearings and the joint geometry R. The L_C values for the different shaft sizes are shown in the tables (see data sheets).

When selecting driveshafts, the bearing life and the operating strength must be considered separately. According to the load state, the reversing fatigue torque T_{DW} or the pulsating fatigue torque T_{DSch} must also be taken into consideration.

Selection of GWB® driveshafts

2. Selection by bearing life

By bearing capacity factor L_C

The bearing life L_h of a driveshaft depends on the bearing capacity factor and is based on the following formula:

 $L_h = \frac{L_C \cdot 10^{10}}{n \cdot \beta \cdot T^{10/3} \cdot K_1}$

If the desired bearing life L_h is given, the joint size can be calculated by the bearing capacity factor L_C .

 $L_{C} = \frac{L_{h} \cdot n \cdot \beta \cdot T^{10/3} \cdot K_{1}}{10^{10}}$

The L_C values can be taken from the tables (see data sheets).

- L_C = Bearing capacity factor
- n = Operating speed [rpm]
 β = Operating deflection angle [\$°]
- T = Operating torque [kNm]
- K₁ = Shock factor

If operating data are based on a duty cycle, a more precise durability can be calculated.

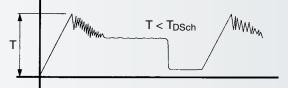
Drives with internal combustion engines may cause torque peaks that must be considered by factor K_1 . Electric motor/turbine $K_1 = 1.00$ Gasoline engine 4 cylinder and more $K_1 = 1.15$ Diesel engine 4 cylinder and more $K_1 = 1.20$

The values shown in the tables are general values. If a flexible coupling is used, the shock factor is lower. Principally the data of the motor and/or coupling manufacturer must be observed.

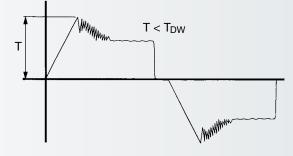
3. Operating dependability

The operating dependability can be determined if a certain duty cycle is given. The calculated service life of a driveshaft under normal working conditions has to achieve or exceed the required service life.

Duty cycles are often not available. In such cases, Dana engineers will make use of more than 60 years of experience as a manufacturer of driveshafts to provide an optimal selection.


Calculations are based on the peak torque T and the maximum peak torque T_{SP} that may occur. The peak torque is determined according to the type of operation and the torque characteristic. It should be lower than the corresponding torques T_{DSch} and T_{DW} .

 $T_N \cdot K = T < T_{DSch} \text{ or } T_{DW}$


Selection of GWB® driveshafts

Typical types of torques:

Pulsating stress

The maximum peak torque T_{SP} is the extremely rarely occuring torque of the system (crash, emergency case).

This maximum torque (T_{SP}) should not exceed the functional limited torque T_{CS} of the driveshaft.

$T_{SP} < T_{CS}$

T _{SP} = Maximum peak torque	[Nm]
T _N = Nominal torque	[Nm]
T _{CS} = Functional limit torque of	
the driveshaft	[Nm]
(see data sheets)	

Light shock load: K = 1,1 – 1,5 Driven machines

Centrifugal pumps Generators (continuous load) Conveyors (continuous load) Small ventilators Machine tools Printing machines

Medium shock load: K = 1,5 - 2 Driven machines

Centrifugal pumps Generators (non-continuous load) Conveyors (non-continuous load) Medium ventilators Wood handling machines Small paper and textile machines Pumps (multi-cylinder) Compressors (multi-cylinder) Road and bar mills Locomotive primary drives

Heavy shock load: K = 2 - 3 Driven machines

Large ventilators Marine transmissions Calender drives Transport roller tables Small pinch rolls Small tube mills Heavy paper and textile machines Compressors (single-cylinder) Pumps (single-cylinder)

Heavy shock load: K = 2 - 3 Driven machines Mixers Bucket wheel reclaimers Bending machines Presses Rotary drilling rigs Locomotive secondary drives Continuous casters Crane drives

Extra-heavy shock load: K = 3 - 5 Driven machines

Continuous working roller tables Medium section mills Continuous slabbing and blooming mills Continuous heavy tube mills Reversing working roller tables Vibration conveyors Scale breakers Straightening machines Cold rolling mills Reeling drives Blooming stands

Extreme shock load: K = 5 – 10 Driven machines

Feed roller drives Wrapper roll drives Plate-shears Reversing slabbing and blooming mills

Service factor K

The service factors shown in the following tables should be used as approximate values only.

Additional information and ordering instructions

Selection of driveshafts

The selection of a GWB[®] driveshaft is determined not only by the maximum permissible torque of the shaft and the connections but also by a variety of other factors.

For the exact determination and selection of driveshafts, see the Selection of Driveshafts pages in this brochure.

Dana engineers can precisely calculate the correct size of the shaft and joint for your application with the use of computer programs created specifically for this purpose.

In order to best match your requirements, you'll be asked to provide the following information:

- Installation length of the driveshaft
- Maximum joint angle requirement
- Required length compensation
- Maximum rotation speed of the shaft
- Shaft end connection details
- Maximum torque to be transmitted
- Nominal torque to be transmitted
- Load occurrences
- Description of the equipment and working conditions

Specific applications

Driveshafts in railway transmissions

The selection of driveshafts in the secondary system of railway

vehicles must be based on the maximum torque that can be transmitted to the track (wheel slip or adhesion torque).

Driveshafts in crane travel drives

The particular operating conditions for travel drives of cranes have been taken into consideration in the DIN-standard 15450. As a result, driveshafts for these applications can be selected by using that standard.

Driveshafts in marine transmissions

These driveshafts are subject to acceptance and must correspond to the standards of the respective classification society.

Driveshafts for other forms of passenger conveyance

Driveshafts used in amusement park equipment, ski lifts or similar lift systems, elevators, and rail vehicles must be in accordance with the standards and specifications of the appropriate licensing and supervisory authorities.

Driveshafts in explosive environments (Atex-outline)

For the use of driveshafts in areas with danger of explosion, an EC-conformity certificate acc. to EC-outline 94/9/EG can be

provided. The possible categories for the product "driveshaft" are:

a) in general: (€ ⊗ II 3 GDc T6
b) for driveshafts with adapted features: (€ ⊗ II 2 GDc T6

The driveshaft should not be used under the following operating conditions:

- Within the critical bending speed range of the drive
- Within the critical torsional speed range of the drive
- At operating angles which exceed the specified maximum (refer to drawing confirmed with order)
- At dynamic and static operating torques which exceed the specified limit (refer to drawing confirmed with order)
- At speed x deflection angle (n x β) conditions which exceed the limit (refer to GWB[®] catalog)
- For usage time which exceeds the calculated bearing lifetime of the joint bearings

About Dana Holding Corporation

Dana is a global leader in the supply of highly engineered driveline, sealing, and thermal-management technologies that improve the efficiency and performance of vehicles with both conventional and alternative-energy powertrains. Serving three primary markets passenger vehicle, commercial truck, and off-highway equipment -Dana provides the world's original-equipment manufacturers and the aftermarket with local product and service support through a network of nearly 100 engineering, manufacturing, and distribution facilities. Founded in 1904 and based in Maumee, Ohio, the company employs 23,000 people in 26 countries on six continents. In 2013, Dana generated sales of \$6.8 billion.

About GWB® Products

Dana produces GWB[®] industrial driveshafts and genuine service parts for the scrap steel, construction, railway, marine, and paper industries. Manufacturing and assembly operations in Germany are supported by Dana's global network of R&D and distribution facilities.

Trains

Industrial plants

Ships

Discover other performance driveline & axles on our website.